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I. T'.7:01)',ICTITO'r

Rooted binary trees with weighted nodes are structures encountered in many

aretts, such as coding theory, searching and sorting, information storage and

retrieval.

A common quantity of great importance is the weighted path lengL. An

estimate of it gives indications about the expected time of a search or the lergil

of a code, for example. The kndwledge of lower and upper bounds would permit such

estimates.

The noiseless ceding theorem in Information Theory provides a lower

bound for the weighted root-leaf path length. But, until recently, upper bounds

which are the more meaninfgul for many applications, were still lacking. They

were first obtained for unweighted trees, introducing the concept of structural

balance of a tree [1]. Then upper bounds for various weighted trees have been

derived using structural balance and the new concept of weight balance of a tree [2).

In this paper, using a different definition of the weight balance of a

tree, we derive two upper bounds for the total path length of general weighted

node trees.

The first one introduces two parameters 7 and OT which sharpen the bound

but complicate its expression. The pirameters y will be useful every time we have

a certain knowledge of the weight distribution. However, if the estimation of 7

or f',52 requires too much computation, we can take them equal to zero and derive

frog. thi-s-upper bound a simpler one.

The second upper bound, using a different normalization, will be useful

when the entropy of the weights of the nodes is not known.



7J. V::17.17.T.ETiC7:0

A binnry tree Ts. is a finite set of n nodes which is either em.)ty

(if n 0) or else is partitioned .nto the following three classes: A single node

r called the root of Tn, a binary tree Tg on the g nodes 1, .., r-1 called the left

subtree of the root and a binary tree Td on the d nolesr+1, n called the right

subLree of the root (r tz &I, g + d + 1 = 11).

The subscripts 6 and will always refer iespectively to the left and

right subtrees of T
n

. In the above definition they have two meanings. They

indicate both suarees and number of nodes.

A weighted bint,Y7 tree is a binary tree Tn such that a non-negative real

number w
k/

called a weight, is assigned to each node k.of T. We denote a weighted

binary tree of n nodes by the (n +l) -tuple (Tn: wi, wn).

WI Wg, Wd will denote respectively the sum of the weights of Tn, Tgl

and T
d

Weight distribution. We will restrict the weight distribution to the

following case: At least one of the two sons of each non-terminal node must have

a strictly positive weight.

The weighted path length 111,4 of a tree Tn is defined as the sum over all

the nodes of the product of the weight of the node and the level of the node. The

ueirhted path length satisfies the following equalities:

1T11 °

ITn T
6

I + IT
d

Wg + Wd (n > 1)

Weirel root lalance Pc ). The two uicer bounds depend on a parameter
. --- n

which measures tao "balance" of a tree, in the sense of how close the total weiLnts

of the left and right subtrces of the root are to each other. The following



1 W, Wd
P(Tn) 7 if n . 1; otherwise, p(Tn) = min( , ) serves partially

r
1

this pa"poce. This definition implies 0 < p (Tn) Accordine, to the restriction

made previonzly about the weight distribution, p (Tn) = 0 whenever Tn has a right

or left subtree of one node, the weight of which is equal to zero. (We Wd = 0).

We will see later that such a value must be avoided because it would give a bad

entimate of Lue weig:Ited balance of Tn. We notice that the weighted path length

ITn 1
remain the same if the weights of the two sons of T

n
are interchanged. Let

17 denote the positive weight of the two sons of the root of Tn when the condition

W Wd = arises, then the following definition:

1
P(T ) *If n = 1, otherwise

n 2
,W Wd

if Wg Wd 0, then p(Tn) = minkww
r r

-

if W . W
d

= 0, then p(T
n
) = mink

Wd

W-w
r

' W-w '

makes the weighted root balance strictly positive, except for the weighted binary

trees of 3 nodes when one son of the root has a weight equal to zero.

1
The weighted balance t(Tn) is equal to if n = 1 or n = 3, otherwise7

p(Tn) = minP(Tn), p(Tc), p(Td)]. Although the weighted root balance can be

equal to zero for trees of three nodes, we notice that the weighted balance

b(T ) for n 1 is always strictly positive. We deduce from this definition

tLe followinr Inequality.

for n 1 or n ) 3: 0 < p(T ) < p(T ) <1
n n ! -2

Terminal weirhLed bal:Iny (T

r
T
(T
n

) . p(T ) if n = 1 or 3, otherwise:

r (T
n

) )111.111 cr ) (m )]
T 11. 6 ' T 'd



1
this definition implies that 0 <

T
(T
n
) < - . This parameter appears in the

2

first upper- bound. Its evaluation is easy and it sharpens the bound significantly.

In particular, it makes the bound equal to the weighted path length .'or trees of

one or three nodes. However, in any case, if we don't want to estimate it we can

take it equal to zero.

1)cliniLloq o; y; This parameter appears also in the first upper bound.

It can be verified easily that its value does not matter for trees of one or

three nodes. Moreover, the bound is equal to the path length for every value of

y. Therefore, the value of y needs only to be estimated when n > 3.

if n = 3 7(113) s b(T3)

otherwise y(Tn) = min(b(Tn), y(Tg), 7(Td)).

with b(Tn) = (a + 1) log(a + 1) - a log a

wr-
and where a =

W
w
r

The assumption made previously about the weight distribtution implies that for

n > 3, y (T1) has always a finite value, even if wr = 0.

The expression of the first upper-bound shows that the parameer y will

sharpen stfongly the bound if its value is high. However, this parameter will be

useful only whenever we have a sufficient knowledge of the weight distribution of

T
n

, because itz estimation implies tome computation. Nevertheless, y as well as

C1, can in any case be taken equal to zero. This corresponds to the fact that if

n > 1, then W - wr > O.

FII-.ropy r(-' We will introduce the following quantity in the two

bounds:

H(x) = - [x log x (1-x) log(1-x)] for 0 < x < 1.



L or L(Tni will denote the sum of the weights of the terminal nodes of

All the lozarithms in this paper are taken to the base two.
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1. Uzz.:

Let (xl, x2, xn) be a set of n non-negative real nunbers such

that S = L x, > 1. Let x. denote any one of these n nun:hers and ok a real
1=1

nurler such that S > (1 + 90xi. Then, we have the following inequality:

(1) (S-xk) leg (S-mO < S log S - xi log xk - 52ck where

B (nk + 1) (ark + 1) - Ock log

Proof: Let f(x) = x loG x and a and b.te two real nunbert such that 1 < a,

< b. Then we have:

f(1 + b) - f(1) < f(a + b) - f(a).

S Xi
Yi

Xk
Applyinz this relation with a , b = , we obtain the previousa X.. Ork

PC 4
inequality (1).

2. First -rt,er Ee:nri

Let (T
n.
. v

/
.
1
v ) be a weighted binary tree, then the weighted
n

path leriL;th IT
n

1 satisfies the following inequality:

1
IT < 1,A

1W.-1,r 10:(w-w ) +( E - wrlogrf r - 7 (14-w )1
k.1 wk

r

+ (7 + 1 ply) ha

where p, 71 L have the definitions t",;7 e n in (11) .

Froof: c; se (i4 The weight distribution verifies the restriction introduced

prevlous2y and wc assume if wk C then
wk

> 1 for all k.

a) For n = 1, W = and L(T1) CI the assertion is true. We can

(Also lerlJt:
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1,
fi(2) ----H' log + Va. log k - y w1] + (7 4 -

(.7) 11

W.:: inequality which holds fo.! every value of y will be useful in the following

part of the proof.

b) Assume that the assertion is true for all i < n and let

(Tr.; w:, 11,9, (Td; wn, bi the left and right subtrees of T
n

. Hence1

w w for 1 < k < r-1 and w" = w for 1 < k < n-r (g = r-1 and d n-r).k k k+r

Let r;,, PT , 7r;
LJ

in (II). Then,

pa, 074, 7d be respectively the parameters of Tg and T
d
defined

+ W
d
we write:according to the relation IT

n
I = IT I + Itd I Wg

IT I < fw w') log (11 w') + E log log (W ')
n ) g o- g wr k -14r w '2 g g r

k=1

3 1 1Da - w") 1007 - w") + E 1,;, log 1,1" log -IT -7d(We
r ))

d

757 d r d r wk r wrk,-;1

+ (y
e
+ 1 - H(p

T
)) L

g
+

d
+ 1 - H(0

Td
)) Ld + Wg + Wd

Using the equality L = Lg + Ld and the three relations:

p(Tn) = Mih[P(Tn), pg, pd], pT(Tn) =

'13 '1

0, J, 7(Tn) = min[6(Tn), 7g, 7d]

defined in (11), we write:

1ITnI < Tim [Wg - w;) log (We - w;) + (Wd
r

w;) log - w") + E loglwr
k=1 k

d
1

E w" log --Tr - 7(Wg - Wd - w;)) + (7 + 1 - HOT) )1, + + Tecr
k=1 wk

If we assume that T
g

and T
d
have both more than one node (g > 1 and d > 1) then

W - 1.7'

r
> 1 and W

d r
- w" > 1. We can apply the inequality (1) defined at the

bc;-;Imirg or (III). Moreover, using the relation y = min[8(T
n), 7(TC

), 7(T
d
)],

we obLan the Fair of inequalities:



(7) (W - w') lo. - w') < W log W + le log -
C r g

(W
d

- 111 . (: ; - w") log W
d

w" lolot; - re
r

a r - d

We nod obtain tht! followinc, :nequality:

1- n
1

(1.) IT I < 1.! log V + W loaW + E w log w log
n likp) 'g d d k wk r wr

y(W-w
r
)] + (y 1 -

T
))L + we wa

If, however, Tg and T
d
are such that g = 1 or d = 1, we can't apply inequality

(1) because Wg - it' or W
d

w6 is equal to zero. We will use instead the
r

exprcsf:ion (2) derived at the beginning of the proof when n = 1. Assume that

T
g

and T
d
are such that g > 1 and d = 1, then

1
ITal < [wd log Wd +

,

log;17-- + (Yd + 1 - H(Eim ))w;Hl

1
where Dd = OT = 7 0 7d having any value, therefore, after similar steps as

before, we obtain:

1 g 1
IT 1 < [11 w') log; (W - le) + W log W

d
+ E w' log -2,- w' log

n - likt3)gr-gr d-
k3.

k w r wr
=

+ w"
r w

lo 1 - 7 - w'
r r

w")) + (7 + 1 - H(T))L + Wg + Wd
r g

if now we apply the first of the pair of inequalities (2) we obtain the inevality

(4) atruAdy derive d.

Hence for every left and r' -ht. subtree, we have:

1 1
IT 1 < ---T W ler; W 4 W log Vd E wk lo, w

r
log 7(w..1.0)

n g d w
rkr-.1

+ (7 q 1 - H(I IT))/A W6 Wet.
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The qu:11,,ity W
g

lot; W
g
+ W

d d
can be expressed in terms of the weighted root

balaneep(Tn)

W + w 10L;
d

w
d

p Wd) [log(;Ig + W
d
) + log p + p (Wg + Wd) [10L;(1- p) + locr,(W

g
+ W u) ]

(W-w ) log (W-w ) + (W-w. ) (n log p + (1 p) log (1 - p

p 10L(0 (1 - p) log (I7.7) la the entropy of the weighted rout balance of Tn.

Then if we recall that C < < p < 2, we have 0 < H(p) < H(p) < 1.

I

1 1
ITni ric7 [W-wr) log (W -wr) + w, log - log -7- - 7(W-wr)]

k=1 lc wit r wr

I)) ) (W-wr)1 (7 + 1 - n(pT))1, + (1 -

Herre the influctior hyrothenin is verified. The weighted path length ITnI

satisfies the following inequality:

n
IT <

1
77T r(W-w

r
) log (W-w) + wk l

1
og 71- - w log

17 - 7(W-w)]n
k=1

+ (y 4 1 - H(pT))1,

wk
Case (ii): In the general case, let wk IT where wmin is the

min
minimp: of all the positive weights. .Then 117k > 1 for all k such that wk O.

The result Obtained in case (i)) applied to this new weight distribution, gives

immediately the des'red result.

Perark: Lxcept for particular distributions of the weights like a descending one,

for exan;:le, it is difficult to obtain an upper bound which is both sharp and

simple. JV we don't want to introduce the parameters 7 and ;3,2) we can set both

of theL eqval to ::cro. This lctLds us to the simpler.bound:

n
. I

IT I ,-, to,.w

r
) jo,;(W-w )

1 w.lo -wlog 2 ] 4 Ln
k.1

k w
k

r w
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3. second tiuer Pound

1
iAlthouuji the entroa E Wk log r is a natural quantity, . t may not

kql
always be known. )'or sue l cases, the following bound would be useful.

IT 1 <
1 W-wr

[(W-w ) log - 2 (W-w
r
) ] + 2Ln Hoej w

min

min
the of all thcpositive 'weights of T

n
. The proof is quite similar.

We would have tile following substitutions in part (III).

Inequality Used:

(1) (S - xk) log (S - xk) < S log S - 2 xk

S > xk, xk =0 or xlt > 1

Proof: case (i)

(2) ITil < mN [ti log W - 2 W1] + 2 141
r'

1

Vl2)

(3) (W
g

- w') log (W
g

- w') <14g log Wg - 2 w'r r

d
- w") log (W

d r
- w") < W

d
log W

d
- 2 w"

(4) IT
1I

ra
g log W

g + W
d

- 2 (W
g
+II

d
)] +2L

6
+2Ld+Wg+Wd

.

case (ii) remains the same.
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